A Virtual MR Scanner for Education

Hackländer T, Schalla C, Trümper A, Mertens H, Hiltner J, Cramer BM

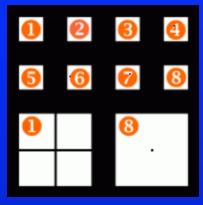
Hospitals of the University Witten/Herdecke, Department of Radiology Wuppertal, Germany

Purpose

- A realistic simulation of a MR scanner is to be developed
- For the user it should be possible to change all relevant settings of the virtual scanner and to adapt them to the expected pathology
- Students in education and doctors in training are the target group.

Purpose: Details

- Examination
 - Selection of an adequate pulse sequence
 - Optimization of tissue contrast by adjusting the parameters of the pulse sequence
 - Optimization of the signal to noise ratio (SNR) and the examination time
 - Identification of image artifacts
- Post processing
 - Windowing
 - Differentiation between image space and k-space

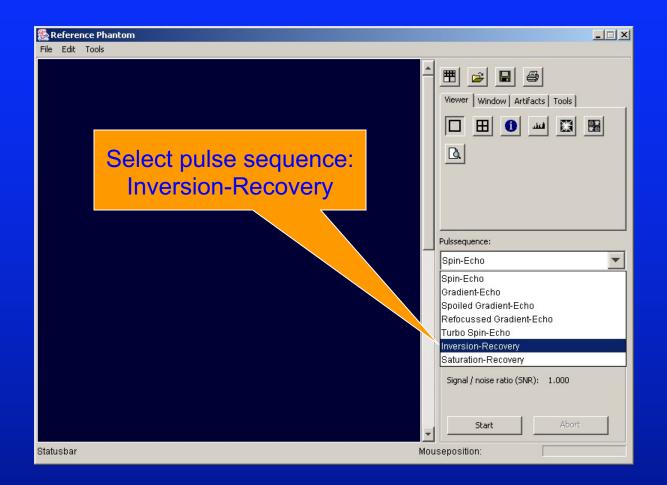

Structure of the Presentation

- 1. A quick tour across the simulation
- 2. The technical structure of the software
- 3. A detailed look at the simulation
- 4. Parameter images
- 5. Conclusion

A Quick Tour: Main Program Window

& « No patient selected »	
File Edit Tools	
	Viewer Window Artifacts Tools
Select the reference phantom for examination	Pulssequence: Spin-Echo Adjustment of exam parameters
	Total exam time: 12 min 48 sec Remaining exam time: 0 min 0 sec Pixel size: 1.00 mm Signal / noise ratio (SNR): 1.000 Start Abort
Statusbar M	fouseposition:

A Quick Tour: Reference Phantom

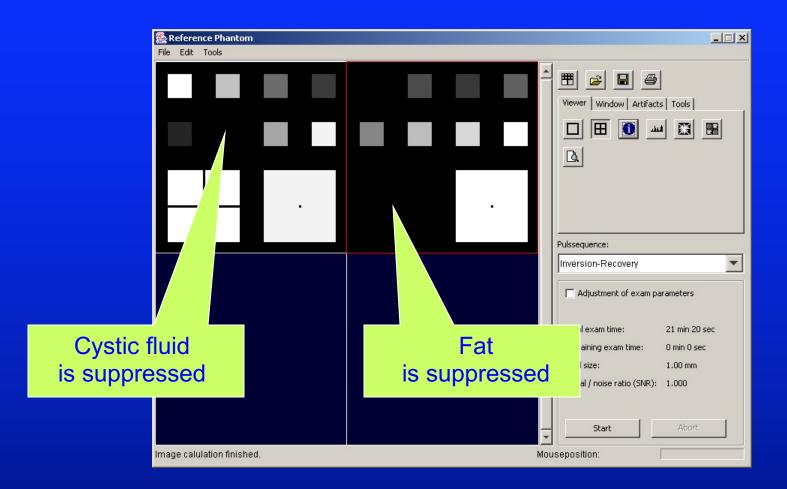

	Content	PD %	T1 ms	T2 ms
1	Fat	80	280	50
2	Methemoglobin	86	460	106
3	White matter	54	510	67
4	Gray matter	62	760	77
5	Edema	77	900	126
6	Cystic Fluid	89	1,080	280
7	CSF	89	2,650	280
8	Water	100	4,000	4000

Relaxation times dependent on magnetic field strength. Given values for 1.5T.

A Quick Tour: Reference Phantom

NumberContentsProton-density %T1 relaxation time msT2 relaxation time ms1Fat80280502Methemoglobin864601063White matter54510674Gray matter62760775Edema779001266Cystic fluid891080280	Sanformation	about the pati	0 0	Phantom			Close the info window
2 Methemoglobin 86 460 106 3 White matter 54 510 67 4 Gray matter 62 760 77 5 Edema 77 900 126	Number	Contents	the state of the s			1	
3 White matter 54 510 67 4 Gray matter 62 760 77 5 Edema 77 900 126	1	Fat	80	280	50		
4 Gray matter 62 760 77 5 Edema 77 900 128	2	Methemoglobin	86	460	106		
5 Edema 77 900 128	3	White matter	54	510	67		
	4	Gray matter	62	760	77		
6 Cystic fluid 89 1080 280	5	Edema	77	900	126		
	6	Cystic fluid	89	1080	280		
7 CSF 89 2650 280	7	CSF	89	2650	280		
8 Water 100 4000 4000	8	Water	100	4000	4000		

A Quick Tour: Select Inversion-Recovery



A Quick Tour: Suppress Cystic Fluid

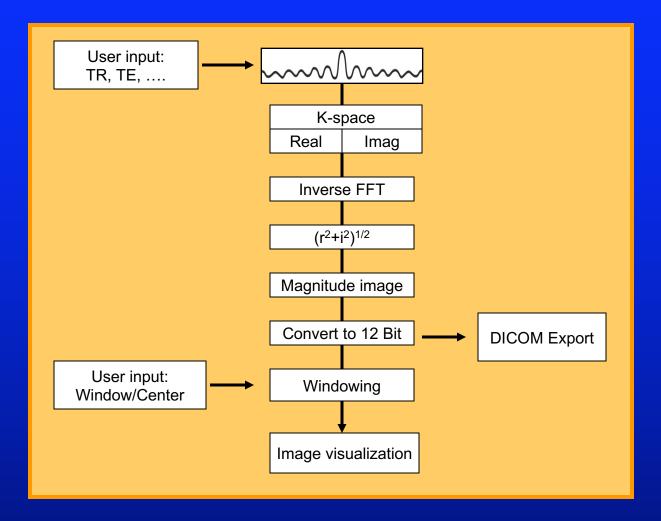
A Quick Tour: Suppress Fat

🛞 Reference Phantom		
File Edit Tools Image 1 Sequence: IR TR: 5000.0 TI: 749.0 TE: FA: ETL :	Examdate: Nov 3, 2002 Name: Patient Name Birthdate: Nov 3, 2002 Sex: O	Viewer Window Artifacts Tools
		1. Select: Four image view Pulssequence: Inversion-Recovery Adjustment of exam parameters
Cystic fluid is suppressed		Total exam time: 21 Remaining exam time: 0 r Pixel size: 1.0 Signal / noise ratio (SNR): 1.0
SP: C: 1414 W: 2829 Image calulation finished.	Mous	Start Abort
		3. Start examination

A Quick Tour: Comparison of Results

Structure of the Presentation

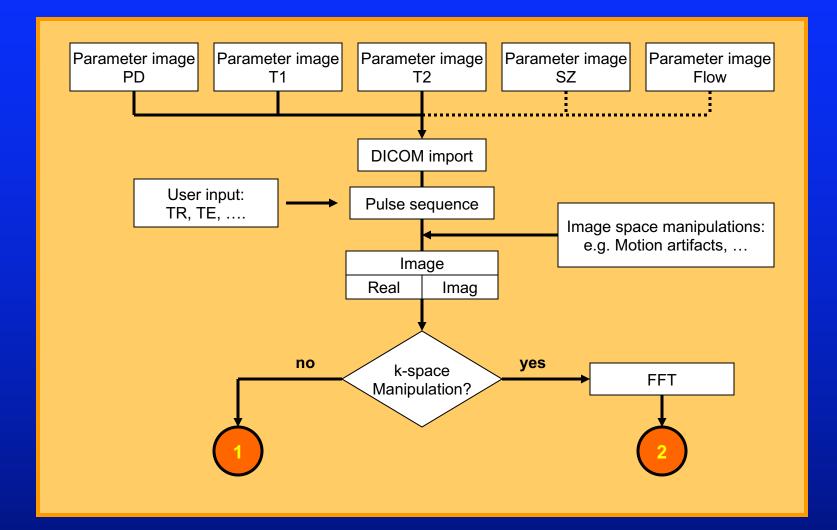
- 1. A quick tour across the simulation
- 2. The technical structure of the software
- 3. A detailed look at the simulation
- 4. Parameter images
- 5. Conclusion

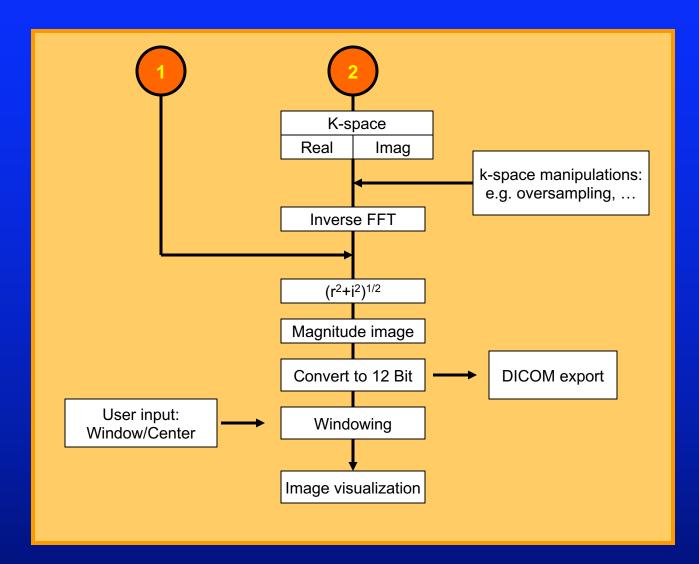


- User interface is to correspond to a real world scanner
- Simulation is to be independent of a particular hardware and software platform
- Pulse sequences are to be easily extensible with a plug-in mechanism

Method

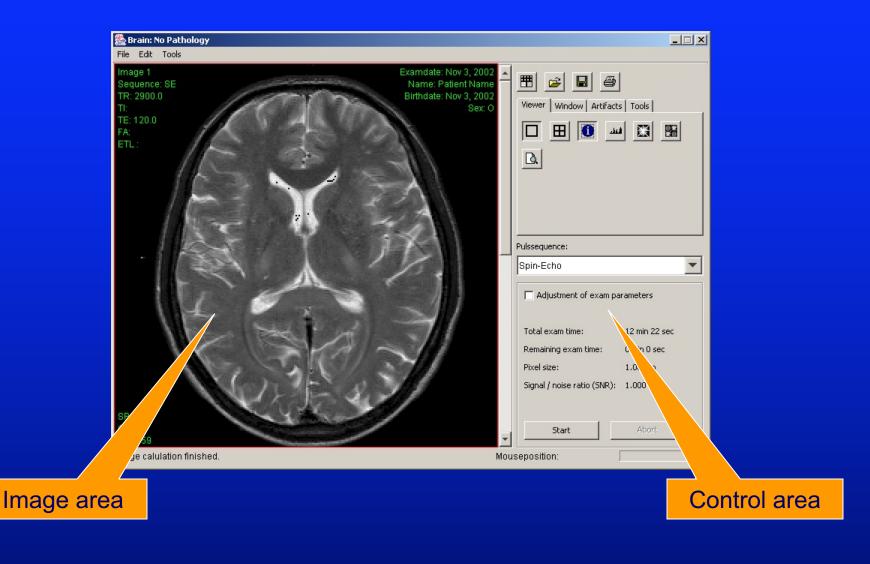
- Programming language:
 - Pure Java 1.2
 - Internationalized versions: English, German, Estonian, ...
- Hardware requirements:
 - Equivalent to a Pentium II 400MHz, 128 MB, 618k (!!) free hard disk space
- Software requirements:
 - Operating system with a Java JRE 1.2 or higher
- License:
 - GNU General Public License

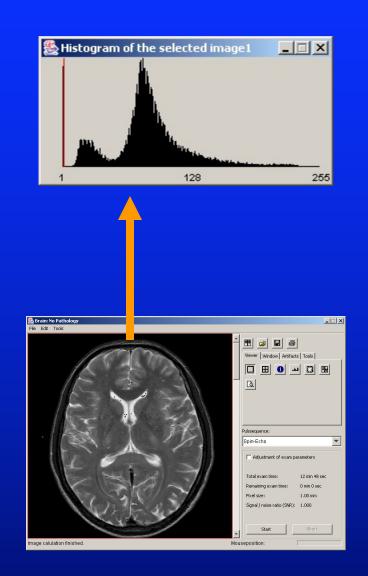

Real MR Scanner


Basics of the Virtual MR Scanner

- 1. Base of the simulation are parameter images of T1, T2 and PD derived once from a real-world examination
- 2. Calculation of an intensity image in exchange for the real-world object
- 3. Superposition of artifacts (e.g. noise) in the image space
- 4. Transform of the intensity image into the k-space
- 5. Processing of k-space analog to a real MR scanner

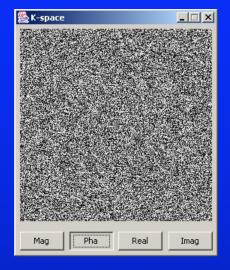
Virtual MR: Part 1


Virtual MR: Part 2

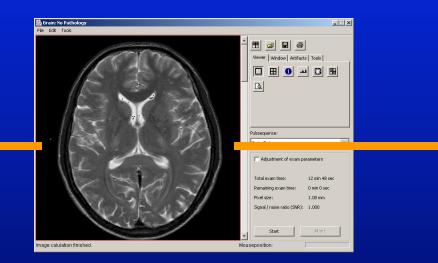

Structure of the Presentation

- 1. A quick tour across the simulation
- 2. The technical structure of the software
- 3. A detailed look at the simulation
- 4. Parameter images
- 5. Conclusion

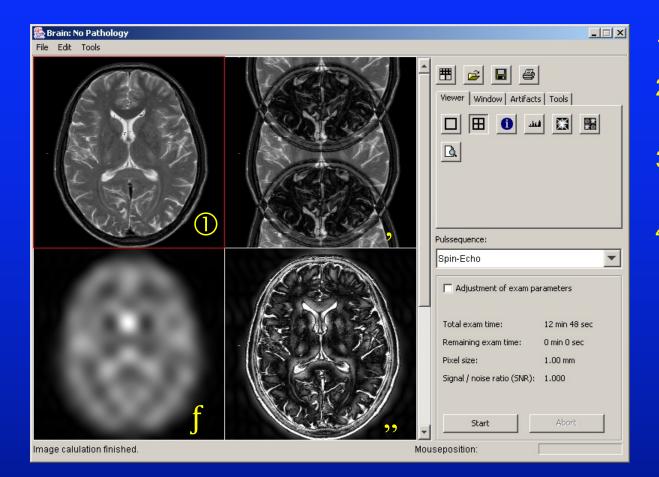
User Interface



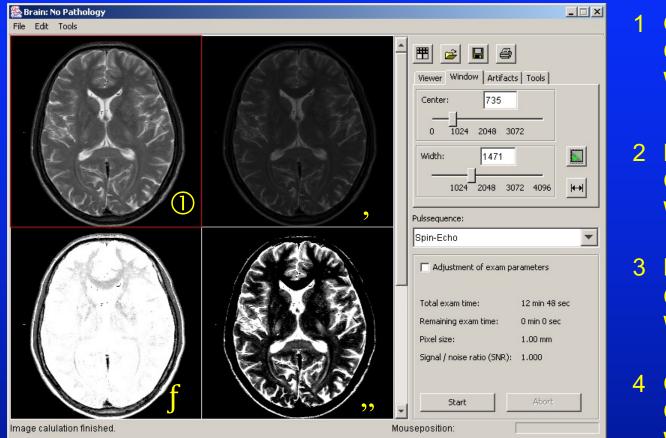
Histogram View



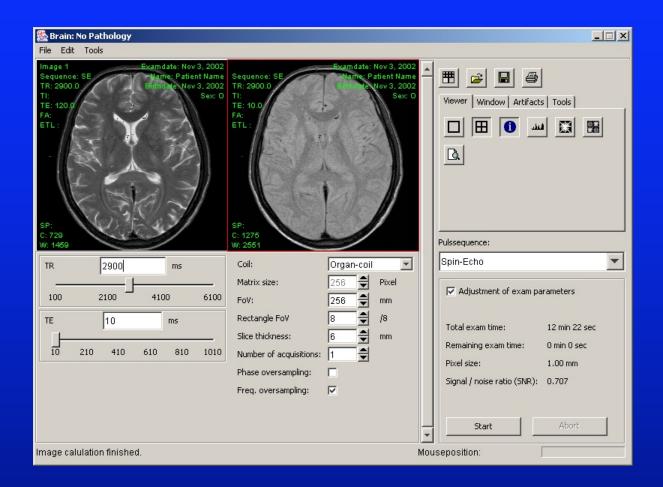
K-Space View



K-Space Manipulator


🎇 K-space manipulator				
Original image	Original k-space.	Clear margins	400	columns
(S & CON		Right:	120 	columns
		Top:	120	rows
Free How Fred		Bottom:	120 🚔	rows
		Clear inner rectangle		
		Width:		columns
E RIA J		Height:	0	rows
16 30 31		Clear rows/columns		
A SE SUN		every	0	row
		every	0	column
Manipulated k-space	Reverse transformed k-space			
		Reve	rse transform	
_				
		Trans	sfer to viewer	

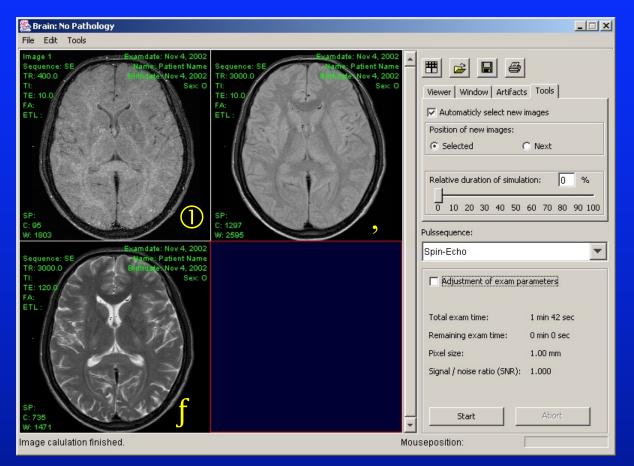
Available K-Space Manipulations


- 1 Original image
- 2 Every 2nd column cleared
- 3 120 pixels wide margin cleared
- 4 16 pixels wide center cleared

Windowing

- Optimum C= 735 W= 1471
- 2 Maximum C= 2048 W= 4096
- 3 Brightness C= 0 W= 880
- 4 Contrast C= 581 W= 303

Adjusting Parameters of a Pulse Sequence

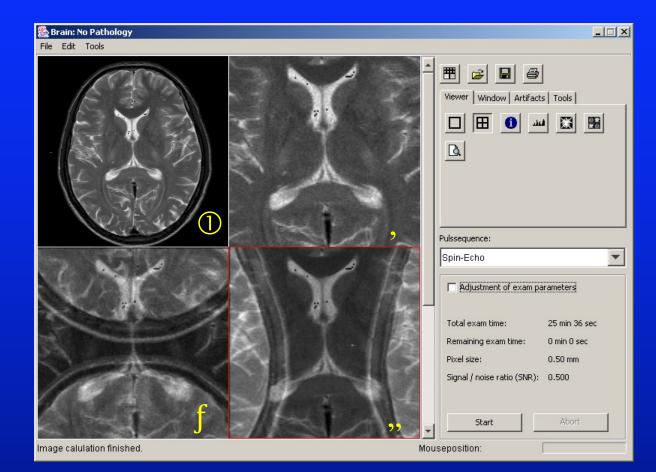

General Parameters

Parameter	Comment
Coil	Organ coil or body coil
Matrix size	Fixed value of 256*256 pixels
Field of View (FoV)	[mm]
Rectangle FoV	Vertical to horizontal ratio of FoV [1/8]
Slice thickness	[mm]
Number of acquisitions	Number of acquisitions/excitations (NEX)
Phase oversampling	Off / On
Frequency oversampling	Off / On

Pulse Sequence dependent Parameters

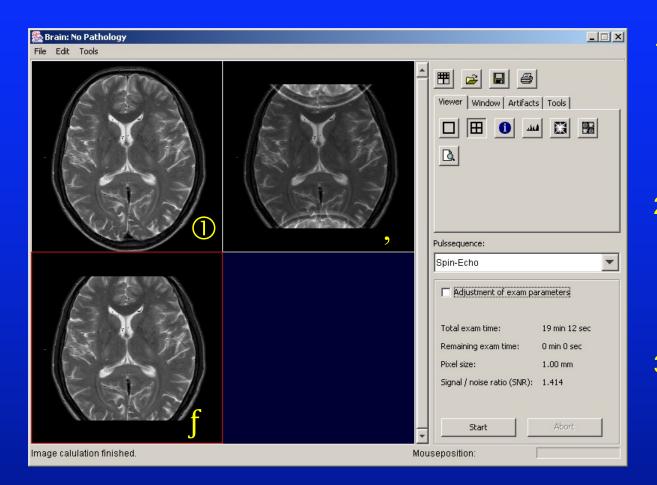
Pulse-Sequence	TR	TE	TI	Flip.	TEeff	ETL
Spin Echo	+	+				
Turbo Spin Echo	+				+	+
Gradient Echo	+	+		+		
Spoiled Gradient Echo	+	+		+		
Refocussed Gradient Echo	+	+		+		
Saturation Recovery	+					
Inversion Recovery	+	+	+			

Weighting (Spin Echo)

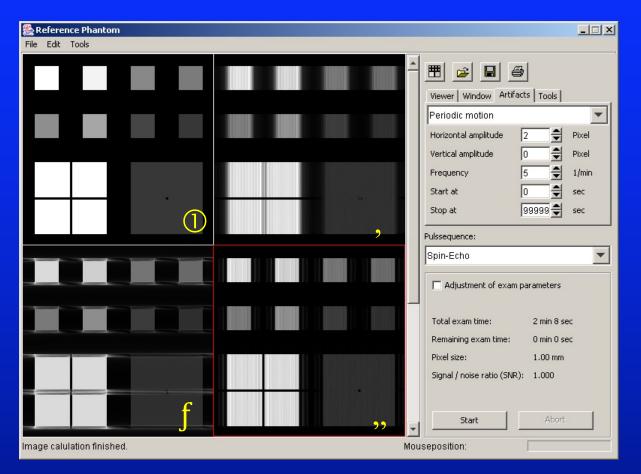

- 1 T1 Weighting TR=400, TE=10
- 2 PD Weighting TR=3000, TE=10
- 3 T2 Weighting TR=3000, TE=120

Signal to Noise Ratio (SNR)

🌺 Refere	ence Phant	om					
File Edit	Tools						
						<u>^</u>	Wiewer Window Artifacts Tools
	-		1				
)	Pulssequence:
		10.225	2000		and the	1000	Spin-Echo
				11.19			Adjustment of exam parameters
				and and			Total exam time: 1 min 42 sec
							Remaining exam time: 0 min 0 sec
							Pixel size: 1.00 mm
			f			<u>,,,</u>	Signal / noise ratio (SNR): 0.333 Start Abort
Image cal	lulation fini:	shed.				Mou	seposition:


- 1 SNR = 1,000 Organ coil, 6mm, 1 NEX
- 2 SNR = 1.000 Body coil, 6mm, 1 NEX
- 3 SNR = 0.333 Body coil, 2mm, 1 NEX
- 4 SNR = 0,943 Body coil, 2mm, 8 NEX

Oversampling PO=Phase Oversampling FO=Frequency Oversampling


- 1 FoV = 256 FO = no, PO = no SNR = 1.000 Exam time 4:16
- 2 FoV = 192 FO = yes, PO = yes SNR = 0.354 Exam time 8:32
- 3 FoV = 192 FO = yes, PO = no SNR = 0.250 Exam time 4:16
- 4 FoV = 192 FO = no, PO = yes SNR = 0.500 Exam time 8:32

Rectangle FoV

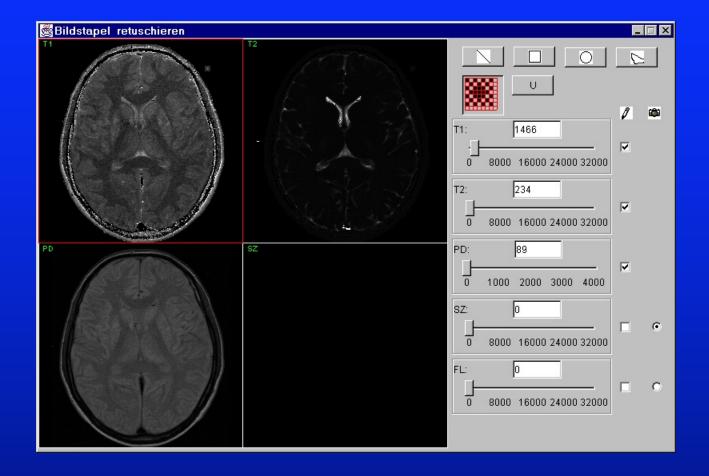
- FoV = 256 Rec = 8 / 8 PO = no SNR = 1.000 Exam time 12:48
 FoV = 256 Rec = 6 / 8 PO = no SNR = 1.000 Exam time 9:36
- 3 FoV = 256 Rec = 6 / 8 PO = yes SNR = 1.414 Exam time 19:12

Motion Artifacts

1 No motion

- 2 Translational motion horizontal = 2 Pix/min
- 3 Translational motion vertical = 2 Pix/min
- 4 Periodic motion horizontal = 2 Pix/min frequency = 5 /min

Structure of the Presentation


- 1. A quick tour across the simulation
- 2. The technical structure of the software
- 3. A detailed look at the simulation
- 4. Parameter images
- 5. Conclusion

Calculation of the Parameter Images

- Patient examination under clinical conditions
- Spin echo pulse sequences
 - T1: TR=160..520 step 30, TE=5 (9 measurements)
 - T2, PD: TR=2440, TE=50..800 step 50 (16 measurements)
- Calculation of T1,T2 and PD using a weighted least square fit
- Error of the calculated T2 values: ± 5%
- T1 is uncertain! Possible solution: non-linear curve fit (Marquardt-Levenberg algorithm) or simplex method

Editor for Parameter Images

Alpha version

Structure of the Presentation

- 1. A quick tour across the simulation
- 2. The technical structure of the software
- 3. A detailed look at the simulation
- 4. Parameter images
- 5. Conclusion

- On a 500 MHz PC the software calculates an image within 5 to 20 seconds
- Calculation time depends on
 - Pulse sequence
 - Superposition of artifacts

Conclusion

- An interactive simulation of a real world examination is possible on a standard PC
- The users can study the operation of a costly and not everywhere available equipment on their desktop
- Contact:
 - Web: www.iftm.de
 - E-Mail: hacklaender@iftm.de